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Abstract

Characterisation of phytoplankton communities in aquatic ecosystems is a
costly task in terms of time, material and human resources. The general objective
of this paper is not to replace microscopic counts but to complement them, by fine-
tuning a technique using absorption spectra measurements that reduces the
above-mentioned costs. Therefore, the objective proposed in this paper is to
assess the possibility of achieving a qualitative determination of phytoplankton
communities by classes, and also a quantitative estimation of the number of
phytoplankton cells within each of these classes, using spectrophotometric
determination.

Samples were taken in three areas of the Spanish Mediterranean coast.
These areas correspond to estuary systems that are influenced by both
continental waters and Mediterranean Sea waters. 139 Samples were taken in 7-8
stations per area, at different depths in each station. In each sample, the
absorption spectrum and the phytoplankton classes (Bacyllariophyceae (diatoms),
Cryptophyceae, Clorophyceae, Chrysophyceae, Prasynophyceae,
Prymnesophyceae, Euglenophyceae, Cyanophyceae, Dynophyceae and the
Synechococcus sp) were determined.

Data were analysed by means of the Partial Least Squares (PLS)
multivariate statistical technique. The absorbances obtained between 400 and 750
nm were used as the independent variable and the cell/l of each phytoplankton
class were used as the dependent variable, thereby obtaining models which relate
the absorbance of the sample extract to the phytoplankton present in it. Good



results were obtained for diatoms (Bacillarophyceae), Chlorophyceae and

Cryptophyceae.
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1.- Introduction

Phytoplankton is one of the organic components of natural waters and,
therefore, phytoplankton diagnosis is important to assess the ecological condition
of coastal waters (Fadeev et al. [2]).

As explained in Millan-Nufiez et al. [8], the light absorption by particulate
matter, including phytoplankton in the ocean, is of great significance, since the
absorption and dispersion of light causes colouring of the sea. The particle
variability allows to determine the attenuation of light, the primary productivity and
the biomass of phytoplankton pigments. Moreover, some authors (Yentsch and
Phinney, [12]; Nelson and Prezelin, [10]; Cleveland, [1]) showed that changes in
the optical characteristics of masses of water were related to cellular biochemical
processes inherent in the consumption of energy by photosynthesis. Many of them
concluded that there is a non-linear relationship between the light absorption
coefficient by phytoplankton and the chlorophyll a concentration. This relationship
is complicated due to phytoplankton properties, such as, size, particles shape and

accessory pigments.

Phytoplankton contains pigments (chlorophylls a, b and c, carotenoids and
phycobiliproteins) in different proportions; thus, phytoplankton identification on the
basis of the absorption spectrum depends on pigment composition in cells.
Pigment composition in the chloroplasts provides a way to classify the algae
group. For example, coloured chloroplasts in diatoms (Bacillariophyceae) are
usually vyellow-brown due to xantophylls, whereas blue-green colours
(cyanophytes) are variable, within a range that encompasses from blue-green to

red due to phycobiliproteins, phycoerythrins (red) and phycocyanins (blue).



Pigments that form the basis for chemical taxonomical discrimination
absorb light in wavelengths in the visible spectrum (Moberg et al. [9]). Therefore,
an alternative way to obtain qualitative information about phytoplankton
composition is to analyse samples absorption through the visible spectrum.
Qualitative information about phytoplankton classes and photoadaptation is
included in such spectrum data, but the key is the interpretation thereof (Moberg et
al. [9]). In general, it is better to interpret or evaluate the spectrum data by means
of chemometrics, a branch of chemistry devoted to extracting information from

large sets of data.

Furthermore, if the presence of blooms or toxic species of phytoplankton
(such as some dinoflagellates) is detected in advance in the phytoplankton
population, the harmful effects produced could be mitigated and even prevented
(Kirkpatrick et al., [6]). Microscopic examination of water samples is the main
method used to detect such toxic groups. Unfortunately, this method is slow,
laborious and intermittent. For this reason, optical detection methods and
automated methods have been developed to determine the presence of these

species in the phytoplankton population in a quick and continuous manner.

Some laboratory works suggest that it is possible to perform group
discrimination on the basis of cellular absorption. For example, Johnsen et al. [5]
used discriminant analysis to classify the absorption spectrum amongst 31 bloom-
formers (which represent the four main groups of phytoplankton with respect to
accessory chlorophylls, for example CI b, Cl c¢; and/or CI ¢, Cl c3 and non-
accessory chlorophylls), thereby distinguishing dinoflagellates and toxic

prymnesiophytes which contain Cl c; from taxons that do not have this pigment.

It could be argued that, if the absorption spectrum of each individual
pigment is known, the absorption spectrum of the phytoplankton may be easily
reconstructed from the concentration of pigments. However, the relation between
pigments concentration and phytoplankton absorption coefficients is not linear,
due to the “package effect”. This effect is caused by the fact that pigments are not

in solution, but rather, packed inside the cells (and in cells inside chloroplasts).



The package effect varies with cell size, with intracellular concentration of several
pigments and with wavelength. Due to these sources of variation (which depend
on environmental factors), it is difficult, if not impossible, to precisely model and
predict this effect for natural populations. Given the complexity of this effect, it is
expected that neuronal network techniques will make it possible to approach the
relation model between pigment concentrations and absorption spectra using
current measurements that implicitly take the package effect into consideration.

As explained in Perry and Darling [11], phytoplankton, other particles and
chromophoric dissolved organic matter are susceptible to radiometric optical
sensors because they absorb, disperse, attenuate and fluoresce light with optical
pattern characteristics (models). Phytoplankton, as a photosynthetic organism,
absorbs electromagnetic radiation primarily within the blue, blue-green and red
bands of the visible spectrum and absorption coefficient is determined by pigment
composition. Because they are particles, phytoplankton disperse light. The manner
in which dispersion of the spectrum takes place is dependent on size (of the
phytoplankton), composition and absorption spectrum. Other non-algal organic
particles, such as bacteria and detritus, are relatively weak absorbers, with the
maximum absorption in the UV region. As is the case of phytoplankton, the way in
which dispersion of the spectrum takes place is dependent on the size distribution.
Suspended sediments generally disperse more than they absorb, although a
strong absorption has been observed in mineral sediments, particularly in iron-rich

minerals.

2.- Experimental

2.1.- Sampling

The study was performed in three areas of the Eastern coast of Spain.
These areas correspond to estuarine systems which are formed when the
fresh/brackish waters of the continental systems flow into the Mediterranean Sea.
Samplings campaigns were performed on 29 March 2006 at the area called
Almenara plume, on 30 March 2006 at the Albufera plume in Valencia and on 17

May 2006 at the Estany plume in Cullera.



Water samples were collected in 2-litre polyethylene bottles and 250-ml
glass bottles. They were kept refrigerated until arrival at the laboratory, which
never took longer than 12 hours. A total of 139 samples were collected,
corresponding to 7-8 stations per area, and in each station samples were taken at

different depths.

2.2.- Analytical techniques

Determination of the absorption spectrum was performed on a 90% acetone
extract obtained filtering water samples through a cellulose acetate membrane
(Millipore 0.45 pm HAWPO04700). Subsequently, they were frozen to break the
cells and to facilitate the pigments release. Filters with the retained particulate
material were introduced in 6 ml of 90% acetone. On this extract absorbance was
determined at 1-nm intervals, at wavelengths between 400 and 750 nm. A 1-cm
quartz cuvette and a Perkin Elmer Lambda 35 spectrophotometer were used.
Absorbance values obtained at 750 nm were subtracted from the values between
400 and 749 nm, in order to eliminate the absorbance which is not caused by the
pigments.

In order to analyse phytoplankton communities, epifluorescence
microscopic count method was used. Samples contained in a 250-ml glass bottle
were fixated with glutaraldehyde until a final concentration of 2%. They were
filtered with 0.2-um membranes (Millipore GTTP), filters were washed with distilled
water to eliminate the retained salt and, subsequently, they were dehydrated with
successive washes with 50%, 80%, 90% and 99% ethanol. Each dried filter was
placed onto a drop of immersion oil in the centre of a slide and 2 more drops were
added on the top side of the filter. Finally, a coverglass was placed on the top of
the filter (Fournier [3]). Phytoplankton counts were performed by epifluorescence
microscopy with a Leica DM2500, using the 100x-oil immersion objective. A
minimum of 300 cells were counted and at least 100 cells of the species or genera

more abundant were counted with an error lower than 20% (Lund [7]).

2.3.- Statistical techniques
Statistical technique called PLS (Partial Least Squares) was used for the

multivariate analysis of the experimental data obtained (Geladi and Kowalski, [4]).



To develop the model that relates absorbances to phytoplankton classes, 2/3 of
the total number of samples (139) were used to fit the model, and the remaining
one-third of samples (46) were used to validate it. Even though the statistical
programme used, SIMCAP 9.0, makes an internal estimation of the model
prediction ability by means of “cross-validation”, the only way to be absolutely sure
regarding a model prediction ability is to make external predictions, that is, to
make predictions for an independent system of observations.

After developing this first model, a second model was developed which
made it possible to verify that the results improved when a filter called OSC
(Orthogonal Signal Correction) was applied to the X variables (absorbances). The
purpose of this method was to correct the matrix of X data by removing the
information that was orthogonal to the Y response matrix, that was, the information
which was not related to the response of interest. This preliminary pre-processing
method was jointly applied to all the spectra in the calibration set. Subsequently,
the correction made on the X matrix was applied to the external set of data in

order to verify the true prediction ability of the model built from the corrected data.

3.- Results and discussion

At the three sampled areas, it was found that the closest stations to the
continental water outflow exhibited a vertical salinity and chlorophyll a gradient,
due to freshwater surface layer present in those stations. This layer was not very
thick; in most cases it was less than 40 cm thickness, for that reason practically all
the samples analysed were saline (36.84 £1.68 g/kg) (salinity and chlorophyll a

date are not showed).

Samples had a phytoplankton composition with a high content of diatoms,
Prasinophyceae and Chlorophyceae as compared to the rest of eukaryotes cells,
as it is shown in figure 1 for the Albufera plume. Although we have not included
prokaryotes (colonial Cyanophyceae and Synechococcus genus) in figure 1, it is
worth mentioning that at the Albufera plume area there are Cyanophyceae which

are not present in the other two areas.



Absorption spectra of the pigment-containing extracts in each sample had a
similar shape, with peaks at 440 and 664 nm, which correspond to chlorophyll a,
the main pigment present in phytoplankton cells. An example is shown in figure 2
for the Albufera plume. Differences should be studied in the accessory pigments
(chlorophylls b and c, carotenoids, etc.); for that reason the area between 400 and
500 nm would have to be enlarged, since these pigments maximum absorption
peaks are in this region.

A first model that related the absorption spectra of the sample extract to
phytoplankton composition (model 1) was developed. Subsequently, in order to
improve the results obtained with model 1, a second model was developed, but in
this case the OSC filter was applied to the X variables (absorbances).

To decide the adequate number of components for model 1, it must be
taken into account the general model fit, which is defined by parameter R?, and the
prediction ability thereof, which is defined by parameter Q. Table 1 shows that the
eigenvalue of the first component (81.7) is greater than the one from the other two
components; furthermore, Q%cum values decreases for the third component and,
consequently, the model ability prediction. Also, when components 2 and 3 are
used, the increase in R? is very small. For all these reasons, it is sufficient to use
only one component in this model. Results obtained with model 1 are shown in
figure 3a, where it can be observed that very good results for the individual model
responses for phytoplankton classes are achieved for diatoms (Bacillariophyceae),
Chlorophyceae and Cyanophyceae, both in terms of the model fit (R?) and its
ability to predict these phytoplankton classes content (Q?). However, results for
Cyanophyceae were discarded because the presence of this class was only
significant in samples from the Albufera plume area, whereas in the remaining
samples most of the Cyanophyceae values were equal to the technique detection

limit.

As previously discussed, model 2 was obtained by applying the OSC filter
to the X variables previous to performing the PLS analysis. Results obtained with
this model improve the former. Table 1 shows that eigenvalue of the first

component (92.9), as was the case with model 1, is very large by comparison to



the following ones. In this case, it was decided to use 3 components because, in
addition to taking into consideration the R? and Q? values (table 1), this was the
number of components that led to the best individual response results. Figure 3b

shows that this model produced adequate results also for Cryptophyceae.

Figure 4 shows diatoms, Cryptophyceae and Chlorophyceae values
predicted with model 2 against the real contents of the samples. In this figure, it
can be observed that good predictions were obtained, since the R? of the linear fit
between predicted and real values was 0.9197 for diatoms, 0.7808 for

Cryptophyceae, and 0.9758 for Chlorophyceae.

Once obtained model 2, it was validated by means of the external set of
samples, which were used to make predictions of the phytoplankton content. As in
the case of the calibration set, the OSC filter was first applied to the absorbances.
This set corresponded to one-third of the total samples taken, which were not used
for the model fit. Prediction results for these samples can be seen in figure 5. In
this case, good predictions were still obtained for diatoms and Chlorophyceae, but
not for Cryptophyceae (figures 5a, 5¢ and 5b, respectively), since the predicted

values obtained were not acceptable.

4.- Conclusions

In this paper, the absorption spectra of the sample extracts led to good
results in determining of diatoms and Chlorophyceae content. An acceptable
model was also obtained for Cryptophyceae, although in this case, in order to
obtain good results, the absorbance values must be processed prior to applying
the multivariate statistical technique. Phytoplankton classes for which good results
were not obtained were due to either they had a limited presence in most of the

samples studied or they had low pigments cellular quota.

In order to improve this work, a study should be performed on samples with
different phytoplankton abundance and composition to the samples already

studied, since it is possible that the majority presence of certain classes makes it



difficult to determine other classes with type and pigments content that have

overlapping or masking spectra.

Phytoplankton determination through extract samples absorption spectra is
a simple and cheap method that, albeit having limitations, may be used to

complement microscopic counts.
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A R2X

R*X(cum)  Eigenvalues R%Y R%Y(cum) Q° limit  Q%cum) significance Iterations

Model 1

0 Cent Cent

1 0,878 0,878 81,70 0,369 0,369 0,303 0,05 0,303 R1 3
2 0,0788 0,957 7,33 0,026 0,395 0,00295 0,05 0,305 R2 9
3 0,0123 0,969 1,14 0,036 0,431 -0,0144 0,05 0,295 R2 25
Model 2

0 Cent Cent

1 0,999 0,999 92,9 0,373 0,373 0,303 0,05 0,303 R1 2
2 0,000452 1 0,0421 0,0608 0,434 0,0545 0,05 0,341 R1 9
3 9,05e-005 1 0,00842 0,0806 0,515 0,0832 0,05 0,396 R1 11

Table 1: PLS results of model 1 and model 2 with X filtered variables (OSC)
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Figure 1: Phytoplanktonic composition (eukaryota) of the Albufera plume samples
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Figure 2: Absorption spectrum of superficial samples from the Albufera plume.
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Figure 3: Statistical adjustment (RZ) and prediction capacity (QZ) for each individual responses.

a) model with 1 component; b) model with 3 components (OSC filter)
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Figure 4: Graphical representation of the observed values versus the predicted values from model 2 with

samples used for the adjustment of the model. a)diatoms (Bacillariophyceae); b)Cryptophyceae;
c)Chlorophyceae



2.0E+007

Coef of determination, R-squared=0.875049
A

1.6E+007
©
o 1.2E+007
[%]
IS
Ie)
©
- 8.0E+006
°
o
S
> 4.0E+006
3
>

0.0E+000

-4.0E+006 ‘ ‘ ‘

0.0E+000 1.0E+007 2.0E+007 3.0E+007

var y obs (diatoms cel/l) a)

2.0E+007

Coef of determination, R-squared=0.184995

[ ]
1.6E+007

1.2E+007

8.0E+006

4.0E+006

var y pred (Cryptophyceae celll)

0.0E+000

-4,0E+006 ‘ ‘
0.0E+000 1.0E+006 2. 0E+006 3.0E+006
var y obs (Cryptophyceae cel/l) b)
Coef of determination, R-squared=0.965184
— 6.0E+007
E
8]
Q
©
Q
S
= 4,0E+007
o
5
<
o
°
IS
< 2.0E+007
>
3
>

0.0E+000 ‘ | | |

0.0E+000 2.0E+007 4.0E+007 6.0E+007

var y obs (Chlorophyceae celll) c)

Figure 5: Graphical representation of the observed values versus the predicted values from model 2 for an
external group of samples. a)diatoms (Bacillariophyceae); b)Cryptophyceae; c)Chlorophyceae



